
Advanced Java Programming Unit 3

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

• Events are supported by the java.awt.event package.

• The modern approach to handling events is based on the delegation event model, which defines standard and

consistent mechanisms to generate and process events.

• A source generates an event and sends it to one or more listeners.

• An event is an object that describes a state change in a source.

• Events may also occur that are not directly caused by interactions with a user interface.

• A source is an object that generates an event. This occurs when the internal state of that object changes

• Sources may generate more than one type of event.

• A source must register listeners in order for the listeners to receive notifications about a specific type of

event. Each type of event has its own registration method.

 the general form:

public void addTypeListener(TypeListener el)

• When an event occurs, all registered listeners are notified and receive a copy of the event object. This is

known as multicasting the event.

• In all cases, notifications are sent only to listeners that register to receive them.

• Some sources may allow only one listener to register. The general form of such a method is this:

public void addTypeListener(TypeListener el) throws java.util.TooManyListenersException

When such an event occurs, the registered listener is notified. This is known as unicasting the event.

• A source must also provide a method that allows a listener to unregister an interest in a specific type of

event. The general form of such a method is this:

public void removeTypeListener(TypeListener el)

• A listener is an object that is notified when an event occurs. It has two major requirements.

• First, it must have been registered with one or more sources to receive notifications about specific types of

events.

Second, it must implement methods to receive and process these notifications.

• The methods that receive and process events are defined in a set of interfaces found in java.awt.event.

• At the root of the Java event class hierarchy is EventObject, which is in java.util.

• It is the superclass for all events. Its one constructor is shown here: EventObject(Object src)

• EventObject contains two methods: getSource() and toString().

• The getSource() method returns the source of the event. Object getSource()

• toString() returns the string equivalent of the event.

• The class AWTEvent, defined within the java.awt package, is a subclass of EventObject. It is the superclass

(either directly or indirectly) of all AWT-based events used by the delegation event model.

Advanced Java Programming Unit 3

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

• getID() method can be used to determine the type of the event.

int getID()

• EventObject is a superclass of all events.

• AWTEvent is a superclass of all AWT events that are handled by the delegation event model

• ActionEvent Generated when a button is pressed, a list item is double-clicked, or a menu item is selected.

• AdjustmentEvent Generated when a scroll bar is manipulated.

• ComponentEvent Generated when a component is hidden, moved, resized, or becomes visible.

• ContainerEvent Generated when a component is added to or removed from a container.

• FocusEvent Generated when a component gains or loses keyboard focus.

• InputEvent Abstract super class for all component input event classes.

• ItemEvent Generated when a check box or list item is clicked; also occurs when a choice selection is made

or a checkable menu item is selected or deselected.

• KeyEvent Generated when input is received from the keyboard.

• MouseEvent Generated when the mouse is dragged, moved, clicked, pressed, or released; also generated

when the mouse enters or exits a component.

• MouseWheelEvent Generated when the mouse wheel is moved.

• TextEvent Generated when the value of a text area or text field is changed.

• WindowEvent Generated when a window is activated, closed, deactivated, deiconified, iconified, opened,

or quit.

• An ActionEvent is generated when a button is pressed, a list item is double-clicked, or a menu item is

selected.

• The ActionEvent class defines four integer constants that can be used to identify any modifiers associated

with an action event: ALT_MASK, CTRL_MASK, META_MASK, and SHIFT_MASK. In addition, there is

an integer constant, ACTION_PERFORMED, which can be used to identify action events.

• Constructors:

ActionEvent(Object src, int type, String cmd)

ActionEvent(Object src, int type, String cmd, int modifiers)

ActionEvent(Object src, int type, String cmd, long when, int modifiers)

• You can obtain the command name for the invoking ActionEvent object by using the getActionCommand(

) method, String getActionCommand()

• The getModifiers() method returns a value that indicates which modifier keys (ALT, CTRL, META, and/or

SHIFT) were pressed when the event was generated.

int getModifiers()

• getWhen() that returns the time at which the event took place. This is called the event’s timestamp.

long getWhen()

• Timestamps were added by ActionEvent to help support the improved input focus subsystem

• An AdjustmentEvent is generated by a scroll bar.

• The AdjustmentEvent class defines integer constants that can be used to identify • them.

BLOCK_DECREMENT: The user clicked inside the scroll bar to decrease its value.

Advanced Java Programming Unit 3

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

BLOCK_INCREMENT : The user clicked inside the scroll bar to increase its value.

TRACK :The slider was dragged.

UNIT_DECREMENT : The button at the end of the scroll bar was clicked to decrease its value.

UNIT_INCREMENT :The button at the end of the scroll bar was clicked to increase its value.

• In addition, there is an integer constant, ADJUSTMENT_VALUE_CHANGED, that indicates that a change

has occurred.

• AdjustmentEvent constructor:

AdjustmentEvent(Adjustable src, int id, int type, int data)

• The getAdjustable() method returns the object that generated the event. Adjustable getAdjustable()

• The type of the adjustment event may be obtained by the getAdjustmentType() method.

• It returns one of the constants defined by AdjustmentEvent.

int getAdjustmentType()

• The amount of the adjustment can be obtained from the getValue() method int getValue()

• A ComponentEvent is generated when the size, position, or visibility of a component is changed

• There are four types of component events

• The ComponentEvent class defines integer constants that can be used to identify them

COMPONENT_HIDDEN: The component was hidden.

COMPONENT_MOVED :The component was moved.

COMPONENT_RESIZED: The component was resized.

COMPONENT_SHOWN :The component became visible.

• Constructors:

ComponentEvent(Component src, int type)

• ComponentEvent is the superclass either directly or indirectly of ContainerEvent,FocusEvent, KeyEvent,

MouseEvent, and WindowEvent.

• The getComponent() method returns the component that generated the event. Component

getComponent()

• A ContainerEvent is generated when a component is added to or removed from a container.

• There are two types of container events

• The ContainerEvent class defines int constants that can be used to identify them: COMPONENT_ADDED

and COMPONENT_REMOVED.

• ContainerEvent is a subclass of ComponentEvent

• constructor:

ContainerEvent(Component src, int type, Component comp)

Advanced Java Programming Unit 3

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

• You can obtain a reference to the container that generated this event by using the getContainer() method

Container getContainer()

• The getChild() method returns a reference to the component that was added to or removed from the

container

Component getChild()

• A FocusEvent is generated when a component gains or loses input focus

• These events are identified by the integer constants FOCUS_GAINED and FOCUS_LOST.

• FocusEvent is a subclass of ComponentEvent

• constructors:

FocusEvent(Component src, int type)

FocusEvent(Component src, int type, boolean temporaryFlag)

Focus Event(Component src, int type, boolean temporaryFlag, Component other)

• The argument temporaryFlag is set to true if the focus event is temporary.

• The other component involved in the focus change, called the opposite component, is passed in other.

Therefore, if a FOCUS_GAINED event occurred, other will refer to the component that lost focus.

Conversely, if a FOCUS_LOST event occurred, other will refer to the component that gains focus.

• You can determine the other component by calling getOppositeComponent(), Component

getOppositeComponent()

• The isTemporary() method indicates if this focus change is temporary boolean isTemporary()

• The abstract class InputEvent is a subclass of ComponentEvent and is the superclass for component input

events. Its subclasses are KeyEvent and MouseEvent.

• InputEvent defines several integer constants that represent any modifiers, such as the control key being

pressed, that might be associated with the event.

• InputEvent class defined the following eight values to represent the modifiers.

ALT_MASK

BUTTON2_MASK

 META_MASK

ALT_GRAPH_MASK

BUTTON3_MASK

SHIFT_MASK

BUTTON1_MASK

 CTRL_MASK

• To test if a modifier was pressed at the time an event is generated, use the isAltDown(), isAltGraphDown(

), isControlDown(), isMetaDown(), and isShiftDown() methods.

• boolean isAltDown()

• boolean isAltGraphDown()

• boolean isControlDown()

Advanced Java Programming Unit 3

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

• boolean isMetaDown()

• boolean isShiftDown()

• You can obtain a value that contains all of the original modifier flags by calling the getModifiers() method.

int getModifiers()

• You can obtain the extended modifiers by called getModifiersEx(), int getModifiersEx()

• An ItemEvent is generated when a check box or a list item is clicked or when a checkable menu item is

selected or deselected.

• There are two types of item events

 •

DESELECTED :The user deselected an item.

SELECTED: The user selected an item.

• ItemEvent defines one integer constant, ITEM_STATE_CHANGED, that signifies a change of state.

• constructor:

ItemEvent(ItemSelectable src, int type, Object entry, int state)

• The getItem() method can be used to obtain a reference to the item that generated an event.

Object getItem()

• The getItemSelectable() method can be used to obtain a reference to the ItemSelectable object that

generated an event.

ItemSelectable getItemSelectable()

• Lists and choices are examples of user interface elements that implement the ItemSelectable interface.

• The getStateChange() method returns the state change (i.e., SELECTED or DESELECTED) for the event.

 int getStateChange()

• A KeyEvent is generated when keyboard input occurs.

• There are three types of key events, which are identified by these integer constants: KEY_PRESSED, •

 KEY_RELEASED, and KEY_TYPED.

• The first two events are generated when any key is pressed or released. The last event occurs only when a

character is generated.

• There are many other integer constants that are defined by KeyEvent.

• For example,

• VK_0 through VK_9 and VK_A through VK_Z define the ASCII equivalents of the

• numbers and letters. Here are some others:

• VK_ENTER

• VK_ESCAPE

• VK_CANCEL

• VK_UP

• VK_DOWN

• VK_LEFT

Advanced Java Programming Unit 3

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

• VK_RIGHT

• VK_PAGE_DOWN

• VK_PAGE_UP

• VK_SHIFT

• VK_ALT

• VK_CONTROL

• The VK constants specify virtual key codes and are independent of any modifiers, such as control, shift, or

alt.

• KeyEvent is a subclass of InputEvent.

• constructors:

• KeyEvent(Component src, int type, long when, int modifiers, int code)

• KeyEvent(Component src, int type, long when, int modifiers, int code, char ch)

• getKeyChar(), which returns the character that was entered, and getKeyCode(), which returns the key

code.

• char getKeyChar()

• int getKeyCode()

• If no valid character is available, then getKeyChar() returns CHAR_UNDEFINED.

• When a KEY_TYPED event occurs, getKeyCode() returns VK_UNDEFINED.

• There are eight types of mouse events. The MouseEvent class defines the following

• integer constants that can be used to identify them:

• MOUSE_CLICKED: The user clicked the mouse.

• MOUSE_DRAGGED: The user dragged the mouse.

• MOUSE_ENTERED: The mouse entered a component.

• MOUSE_EXITED :The mouse exited from a component.

• MOUSE_MOVED: The mouse moved.

• MOUSE_PRESSED: The mouse was pressed.

• MOUSE_RELEASED: The mouse was released.

• MOUSE_WHEEL :The mouse wheel was moved

• MouseEvent is a subclass of InputEvent.

• constructors.

• MouseEvent(Component src, int type, long when, int modifiers, int x, int y, int clicks, boolean

triggersPopup)

• The most commonly used methods in this class are getX() and getY(). These return the X and Y

coordinates of the mouse when the event occurred.

• int getX()

• int getY()

• getPoint() method to obtain the coordinates of the mouse. Point getPoint()

• The translatePoint() method changes the location of the event.

Advanced Java Programming Unit 3

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

void translatePoint(int x, int y)

• The getClickCount() method obtains the number of mouse clicks for this event.

int getClickCount()

• isPopupTrigger() method tests if this event causes a pop-up menu to appear on this platform.

boolean isPopupTrigger()

• int getButton() : It returns a value that represents the button that caused the event. The return value will be

one of these constants defined by MouseEvent.

NOBUTTON BUTTON1 BUTTON2 BUTTON3

• NOBUTTON value indicates that no button was pressed or released.

Advanced Java Programming Unit 3

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

The MouseWheelEvent class encapsulates a mouse wheel event. It is a subclass of MouseEvent

If a mouse has a wheel, it is located between the left and right buttons. Mouse wheels are used for scrolling.

MouseWheelEvent defines these two integer constants.

• WHEEL_BLOCK_SCROLL A page-up or page-down scroll event occurred.

• WHEEL_UNIT_SCROLL A line-up or line-down scroll event occurred.

• constructor.

• MouseWheelEvent(Component src, int type, long when, int modifiers, int x, int y, int clicks, boolean

triggersPopup, int scrollHow, int amount, int count)

• To obtain the number of rotational units, call getWheelRotation(), int getWheelRotation()

• If the value is positive, the wheel moved counterclockwise. If the value is negative, the wheel moved

clockwise.

• To obtain the type of scroll, call getScrollType() int getScrollType()

• If the scroll type is WHEEL_UNIT_SCROLL, you can obtain the number of units to scroll by calling

getScrollAmount().

int getScrollAmount()

• Text Event are generated by text fields and text areas when characters are entered by a user or program.

• TextEvent defines the integer constant TEXT_VALUE_CHANGED.

• Constructor:

TextEvent(Object src, int type)

• The TextEvent object does not include the characters currently in the text component that generated the

event.

• There are ten types of window events. The WindowEvent class defines integer constants that can be used to

identify them.

• WINDOW_ACTIVATED: The window was activated.

• WINDOW_CLOSED :The window has been closed.

• WINDOW_CLOSING :The user requested that the window be closed.

• WINDOW_DEACTIVATED: The window was deactivated.

• WINDOW_DEICONIFIED: The window was deiconified.

• WINDOW_GAINED_FOCUS: The window gained input focus.

• WINDOW_ICONIFIED :The window was iconified.

• WINDOW_LOST_FOCUS: The window lost input focus.

• WINDOW_OPENED :The window was opened.

• WINDOW_STATE_CHANGED: The state of the window changed.

• WindowEvent is a subclass of ComponentEvent

Advanced Java Programming Unit 3

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

• Constructors:

• WindowEvent(Window src, int type)

WindowEvent(Window src, int type, Window other)

• WindowEvent(Window src, int type, int fromState, int toState)

WindowEvent(Window src, int type, Window other, int fromState, int toState)

• getWindow(). It returns the Window object that generated the event.

• Window getWindow()

• Window getOppositeWindow()

• int getOldState()

• int getNewState()

• Button :Generates action events when the button is pressed.

• Checkbox: Generates item events when the check box is selected or deselected.

• Choice :Generates item events when the choice is changed.

• List :Generates action events when an item is double-clicked; generates item events when an item is selected or

deselected.

• Menu: Item Generates action events when a menu item is selected; generates item events when a checkable menu

item is selected or deselected.

• Scrollbar :Generates adjustment events when the scroll bar is manipulated.

• Text components: Generates text events when the user enters a character.

• Window :Generates window events when a window is activated, closed, deactivated, deiconified, iconified, opened,

or quit.

• ActionListener: Defines one method to receive action events.

• AdjustmentListener: Defines one method to receive adjustment events.

• ComponentListener :Defines four methods to recognize when a component is hidden, moved, resized, or shown.

• ContainerListener :Defines two methods to recognize when a component is added to or removed from a container.

• FocusListener: Defines two methods to recognize when a component gains or loses keyboard focus.

• ItemListener: Defines one method to recognize when the state of an item changes.

• KeyListener :Defines three methods to recognize when a key is pressed, released, or typed.

• MouseListener: Defines five methods to recognize when the mouse is clicked, enters a component, exits a component,

is pressed, or is released.

• MouseMotionListener: Defines two methods to recognize when the mouse is dragged or moved.

• MouseWheelListener :Defines one method to recognize when the mouse wheel is moved.

• TextListener :Defines one method to recognize when a text value changes.

• WindowFocusListener: Defines two methods to recognize when a window gains or loses input focus.

• WindowListener: Defines seven methods to recognize when a window is activated, closed, deactivated, deiconified,

iconified, opened, or quit.

• ActionListener interface defines the actionPerformed() method that is invoked when an action event

occurs.

• void actionPerformed(ActionEvent ae)

• AdjustmentListener interface defines the adjustmentValueChanged() method that is invoked

when an adjustment event occurs.

• void adjustmentValueChanged(AdjustmentEvent ae)

Advanced Java Programming Unit 3

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

• ComponentListener interface defines four methods that are invoked when a component is resized, moved,

shown, or hidden.

• void componentResized(ComponentEvent ce)

• void componentMoved(ComponentEvent ce)

• void componentShown(ComponentEvent ce)

• void componentHidden(ComponentEvent ce)

• ContainerListener interface contains two methods.

 When a component is added to a container, componentAdded() is invoked.

When a component is removed from a container, componentRemoved() is invoked.

• void componentAdded(ContainerEvent ce)

• void componentRemoved(ContainerEvent ce)

• FocusListener interface defines two methods. When a component obtains keyboard focus, •

 focusGained() is invoked. When a component loses keyboard focus, focusLost() is called.

• void focusGained(FocusEvent fe)

• void focusLost(FocusEvent fe)

• ItemListener interface defines the itemStateChanged() method that is invoked when the state of an item

changes.

• void itemStateChanged(ItemEvent ie)

• KeyListener interface defines three methods. The keyPressed() and keyReleased() methods are invoked

when a key is pressed and released, respectively. The keyTyped() method is invoked when a character has

been entered.

• void keyPressed(KeyEvent ke)

• void keyReleased(KeyEvent ke)

• void keyTyped(KeyEvent ke)

• MouseListener interface defines five methods. If the mouse is pressed and released at the same point,

mouseClicked() is invoked. When the mouse enters a component, the mouseEntered() method is called.

When it leaves, mouseExited() is called. The mousePressed() and mouseReleased() methods are invoked

when the mouse is pressed and released,

• void mouseClicked(MouseEvent me)

• void mouseEntered(MouseEvent me)

• void mouseExited(MouseEvent me)

• void mousePressed(MouseEvent me)

• void mouseReleased(MouseEvent me)

• MouseMotionListener interface defines two methods. The mouseDragged() method is called multiple

times as the mouse is dragged. The mouseMoved() method is called multiple times as the mouse is moved.

• void mouseDragged(MouseEvent me)

• void mouseMoved(MouseEvent me)

Advanced Java Programming Unit 3

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

• MouseWheelListener interface defines the mouseWheelMoved() method that is invoked when the mouse

wheel is moved.

• void mouseWheelMoved(MouseWheelEvent mwe)

• TextListener interface defines the textChanged() method that is invoked when a change occurs in a text

area or text field

• void textChanged(TextEvent te)

• WindowFocusListener interface defines two methods: windowGainedFocus() and windowLostFocus().

These are called when a window gains or losses input focus.

• void windowGainedFocus(WindowEvent we)

• void windowLostFocus(WindowEvent we)

Advanced Java Programming Unit 3

Free Study Material Buy Ty Diploma Buy Sy Diploma Whatsapp Group for Study Material

WindowListener interface defines seven methods. The windowActivated() and windowDeactivated()

methods are invoked when a window is activated or deactivated, respectively. If a window is iconified, the

windowIconified() method is called. When a window is deiconified, the windowDeiconified() method is

called. When a window is opened or closed, the windowOpened() or windowClosed() methods are

called, respectively. The windowClosing() method is called when a window is being closed.

• void windowActivated(WindowEvent we)

• void windowClosed(WindowEvent we)

• void windowClosing(WindowEvent we)

• void windowDeactivated(WindowEvent we)

• void windowDeiconified(WindowEvent we)

• void windowIconified(WindowEvent we)

• void windowOpened(WindowEvent we)

• adapter class, that can simplify the creation of event handlers in certain situations. An adapter class provides

an empty implementation of all methods in an event listener interface. Adapter classes are useful when you

want to receive and process only some of the events that are handled by a particular event listener

interface. You can define a new class to act as an event listener by extending one of the adapter classes and

implementing only those events in which you are interested.

• Adapter Class: Listener Interface

• ComponentAdapter: ComponentListener

• ContainerAdapter :ContainerListener

• FocusAdapter: FocusListener

• KeyAdapter :KeyListener

• MouseAdapter: MouseListener

• MouseMotionAdapter: MouseMotionListener

• WindowAdapter :WindowListener

• An anonymous inner class is one that is not assigned a name

• an inner class is a class defined within other class, or even within an expression.

